
# Co-Catalyzed Hydroarylation of Unactivated Olefins

Hiroki Shigehisa,\* Takuya Ano, Hiroshi Honma, Kousuke Ebisawa, and Kou Hiroya

Faculty of Pharmacy, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan

Supporting Information

**ABSTRACT:** A mild, general, scalable, and functional group tolerant intramolecular hydroarylation of unactivated olefins using a Co(salen) complex, a *N*-fluoropyridinium salt, and a disiloxane reagent was reported. This method, which was carried out at room temperature, afforded six-membered benzocyclic compounds from mono-, 1,1- or *trans*-1,2-di, and trisubstituted olefins.



nenzocyclic frameworks are important structural motifs in biologically active compounds. Among them,  $\alpha,\alpha$ -dimethyl benzocycles are frequently found in the structures of retinoic acid synthetic analogs, retinoids. Whereas all-trans-retinoic acid (1) shows various biological activities associated with toxicity and teratogenicity due to its flexible structure, conformationally restricted retinoids containing an arene ring, known as arotinoids or heteroarotinoids, have historically been considered to show improved chemotherapeutic ratios (efficacy/toxicity) and have the potential to be used as pharmaceuticals, for example, tamibarotene (2, potential antineoplastic activity against acute promyelocytic leukemia)<sup>2</sup> and tazarotene (3, treatment of acne and psoriasis) (Figure 1).<sup>3</sup> Therefore, a robust synthetic tool for the construction of benzocyclic frameworks is highly desired in medicinal chemistry and synthetic organic chemistry.

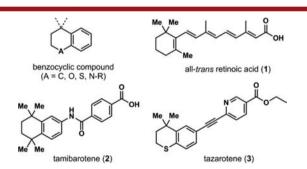
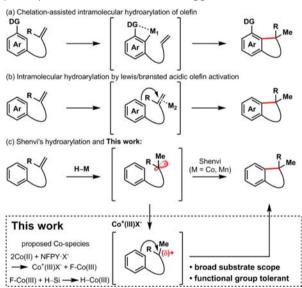




Figure 1. Benzocyclic compound, retinoid, and heteroarotinoids.

From a synthetic point of view, intramolecular hydroarylation of unactivated olefins is a straightforward method for constructing benzocyclic frameworks (Scheme 1). Indeed, many groups have reported this type of reaction using various catalysts. Attractive chelation-assisted intramolecular hydroarylation of olefins was reported by Ellman–Bergman, Rovis, Cramer, Yoshikai, and Sahoo, which essentially required a directing group on the substrate (Scheme 1a). An alternative approach, which involves nucleophilic attack by an arene ring

# Scheme 1. Representative Activation Mode of Hydroarylation of Olefins and Our Approach



on metal (or Brønsted acid) coordinated olefins, followed by protonation of the metal—carbon bond, was reported by Duñach, Widenhoefer, Sames, Tan, Weghe, and West terms of functional group tolerance in these nondirecting group reactions. Besides, there are good examples of intermolecular versions of such reactions.

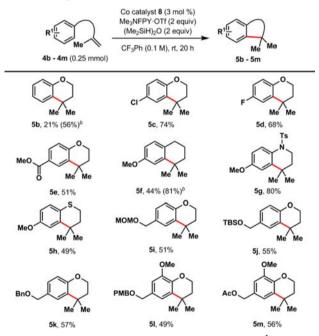
Recently, Shenvi reported radical hydroarylation protocols using a Co complex (three reactions)<sup>16</sup> or a Mn complex (for the synthesis of arylmenthol)<sup>17</sup> in the presence of phenylsilane, which includes a carbon-radical generated by a hydrogen atom transfer mechanism (Scheme 1c, above). On the other hand, we independently reported an olefin activation protocol using a

Received: June 8, 2016 Published: July 14, 2016 Organic Letters Letter

Co(salen) complex, an N-fluoropyridinium salt, and a disiloxane reagent to enable intermolecular hydroalkoxylation and intramolecular hydroamination of unactivated olefins with a broad substrate scope and excellent functional group tolerance.<sup>18</sup> Mechanistically, a carbocationic intermediate generated from unactivated olefins via carbon-radical is speculated. Based on this, we envisioned that cyclization can be achieved using an alkenyl arene substrate to afford a benzocyclic framework under identical or modified reaction conditions via generation of a carbocationic intermediate and C-C bond formation (Scheme 1c, below). In light of our previous reports and related examples from other groups, 16,17,19 broad functional group tolerance can be expected. Herein, we report a new method for intramolecular hydroarylation of unactivated olefins using a Co(salen)complex, an N-fluoropyridinium salt, and a disiloxane reagent. The mild reaction conditions showed a broad substrate scope, including functionalized complex molecules.

We began our study with the hydroarylation of 4a under the reaction conditions used for the hydroamination of olefins previously reported by us  $(Table\ 1)$ . The reaction of 4a catalyzed by Co complex 6 (3.0 mol %) in trifluorotoluene in the presence of *N*-fluoro-2,4,6-trimethylpyridinium trifluoromethanesulfonate  $(Me_3NFPY\cdot OTf,\ 2.0\ equiv)^{20}$  and  $(Me_2SiH)_2O$  (2.0 equiv) afforded the desired chroman 5a in

Table 1. Optimum Reaction Conditions


| entry           | Co cat. | Si-H reagent                    | yield (%) of <b>5a</b> ( <b>4a</b> ') <sup>a</sup> |
|-----------------|---------|---------------------------------|----------------------------------------------------|
| 1               | 6       | $(Me_2SiH)_2O$                  | 16 (53)                                            |
| 2               | 7       | $(Me_2SiH)_2O$                  | 34 (7)                                             |
| 3               | 8       | $(Me_2SiH)_2O$                  | <b>83</b> (9), 76 <sup>b</sup>                     |
| 4               | 9       | $(Me_2SiH)_2O$                  | 0 (0)                                              |
| 5               | 10      | $(Me_2SiH)_2O$                  | 34 (4)                                             |
| 6               | 11      | $(Me_2SiH)_2O$                  | 82 (0)                                             |
| 7               | 12      | $(Me_2SiH)_2O$                  | 51 (39)                                            |
| 8               | 13      | $(Me_2SiH)_2O$                  | 69 (trace)                                         |
| 9               | 14      | $(Me_2SiH)_2O$                  | 43 (20)                                            |
| 10              | 15      | $(Me_2SiH)_2O$                  | 32 (15)                                            |
| 11              | 8       | PhSiH <sub>3</sub> <sup>c</sup> | 31 (29)                                            |
| 12              | 8       | $PhSiH_2(O^iPr)$                | 34 (10)                                            |
| 13 <sup>d</sup> | 8       | $(Me_2SiH)_2O$                  | 28 (14)                                            |
| 14 <sup>d</sup> | 8       | $(Me_2SiH)_2O^e$                | 32 (21)                                            |
|                 |         |                                 |                                                    |

<sup>a</sup>Yield was determined by <sup>1</sup>H NMR analysis of crude reaction mixture using 1,4-bis(trifluoromethyl)benzene as an internal standard unless otherwise noted. <sup>b</sup>Isolated yield. <sup>c</sup>1.3 equiv was used. <sup>d</sup>Without Me<sub>3</sub>NFPY·OTf <sup>e</sup>0.1 equiv was used.

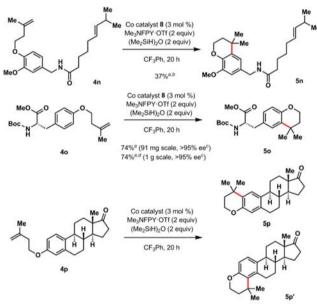
16% yield, together with trisubstituted olefin isomer 4a' (53%) and a hydrated compound (29%) (entry 1). Then, we evaluated a series of ligands for this reaction (entries 2-4). To our delight, simply changing the diamine unit increased the yield dramatically; product 5a was obtained in 83% yield using 1,3propanediamine containing Co complex 8, together with a hydrogenated byproduct (7%). Lower loadings of (Me<sub>2</sub>SiH)<sub>2</sub>O offered no appreciable benefit. Further ligand tuning was conducted by changing the aromatic substituents. It was found that only the tert-butyl groups at the 3-position (benzaldehyde numbering) of the aromatic ring were essential for obtaining a high yield (entries 5, 6). We evaluated a series of various sized substituents and identified the tert-butyl group as optimal (entries 7-10). More results from the catalyst screening are shown in the Supporting Information. Replacing (Me<sub>2</sub>SiH)<sub>2</sub>O with phenylsilane (PhSiH<sub>3</sub>) or isopropoxy(phenyl)silane [Ph(i- $PrO)SiH_2$ <sup>19y</sup> gave an unsatisfactory result (entries 11, 12). The reaction in the absence of Me<sub>3</sub>NFPY·OTf gave the desired product in low yield (entry 13). Furthermore, the use of 0.1 equiv of (Me<sub>2</sub>SiH)<sub>2</sub>O (corresponding to the modified Shenvi's radical protocol) also yielded the same result (entry 14), which clearly indicates the beneficial effect of Me<sub>3</sub>NFPY·OTf in our cationic pathway.<sup>21</sup>

After establishing the optimal reaction conditions, we explored the scope of the hydroarylation protocol with various alkenyl arenes, **4b–4m** (Table 2). In most cases, hydrogenated

Table 2. Scope of Alkenyl Arene<sup>a</sup>



"Isolated yield is shown unless otherwise noted.  ${}^b$ Yield was determined by  ${}^1$ H NMR analysis of the crude reaction mixture using 1,4-bis(trifluoromethyl)benzene as an internal standard.


byproducts were observed in small amounts (trace to 10%). Alkenyl arene **4b** lacking an electron donating methoxy group was hydroarylated to afford volatile chroman **5b** in 56% yield. Surprisingly, this protocol was also effective for electron-withdrawing groups on the aromatic ring, albeit with a lower yield than that obtained with electron-donating groups (**5c**–**5e**). This tendency is consistent with the inclusion of a carbocationic intermediate generated from the olefin moiety.

Organic Letters Letter

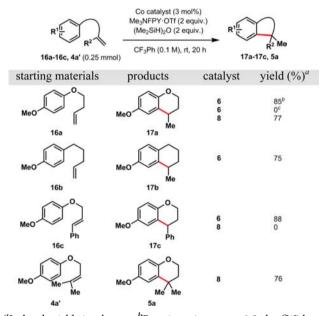
The desired tetralin (5f) and tetrahydroquinoline (5g) were also obtained by replacing the oxygen atom with methylene or tosyl amide on the tether unit. Notably, a wide range of functional groups was tolerated; for example, sulfide-containing thiochroman (5h) was successfully isolated in acceptable yield together with a complex product mixture. Moreover, various chromans were produced from alkenyl arenes bearing an acidsensitive acetal (5i), a fluoroanion-sensitive silyl ether group (5j), and a benzyl group (5k). Vanillin-derived chromans bearing an acid-sensitive p-methoxybenzyl group (5l) and basesensitive acetyl group (5m) were also isolated in acceptable yields together with complex product mixtures. At this stage, the method was found to be extremely effective for sixmembered ring cyclization (see Supporting Information).

Encouraged by these results, we attempted the synthesis of more complex molecules using this reaction (Scheme 2). As

Scheme 2. Application to Complex Molecule Synthesis



| entry     | Co catatalyst | yield (%)  |       |                  |
|-----------|---------------|------------|-------|------------------|
|           |               | 5p + 5p    | 4p    | 4p' <sup>e</sup> |
| $1^f$     | 6 (3 mol %)   | 0          | 0     | ND               |
| $2^f$     | 8 (3 mol %)   | 45 (1:1)   | 5     | 10               |
| $3^f$     | 10 (3 mol %)  | 26 (1.5:1) | 13    | 40               |
| $4^f$     | 11 (3 mol %)  | 54 (1:1)   | 6     | 8                |
| $5^f$     | 12 (3 mol %)  | 31 (2:1)   | 55    | trace            |
| $6^f$     | 12 (6 mol %)  | 57 (1.5:1) | trace | 6                |
| $7^{a,g}$ | 12 (6 mol %)  | 51 (1.5:1) | ND    | ND               |


<sup>a</sup>Isolated yield is shown. <sup>b</sup>Purity of commercially available natural capsaicin is 60% containing the inseparable dihydro form of the olefin. As such, **5n** is also a mixture of **5n** and the dihydro product (1:1). <sup>c</sup>Determined by chiral phase HPLC analysis. <sup>d</sup>6 mol % catalyst **8** was used. <sup>e</sup>4p' is the trisubstituted olefin isomer of 4p. <sup>f</sup>0.25 mmol. Yield was determined by <sup>1</sup>H NMR analysis of the crude reaction mixture using 1,4-bis(trifluoromethyl)benzene as an internal standard. <sup>g</sup>1 g of 4p was used.

expected, capsaicin-derived **5n** was obtained from **4n**, with both 1,2-disubstituted olefin and amide tolerated. We also successfully synthesized artificial amino acid derivative **5o** from L-tyrosine-derived compound **4o** without significant racemization, together with a hydrogenated dihydro-product (13%). The scalability was examined using 1 g of **4p** and 6 mol

% of catalyst 8; this attempt also afforded 5p without any problem. Hydroarylation of estrone-derived 4p was examined, however, catalyst 8 gave hydroarylated products 5p and 5p', together with a complex product mixture. To our delight, we found that catalyst 12 afforded 5p and its isomer 5p' with a minimal amount of byproducts by catalyst rescreening (entries 1–5). Acceptable conversion was achieved by increasing the catalyst loading to give slightly improved yields of 5p and 5p' (entry 6). The scalability of this reaction was reexamined using 1 g of 4p, and 5p and 5p' were successfully obtained in acceptable yields (entry 7).

Next, the scope of the olefin moiety was investigated using alkenyl arenes 16a-16c/4a', and we found that the optimal catalyst should be selected depending on the olefin substitution pattern (Table 3). In contrast to 1,1-disubstituted olefins,

Table 3. Scope of Olefin Moiety



 $^a \rm Isolated$  yield is shown.  $^b \rm Reaction$  time was 1.0 h.  $^c \rm Without~Me_3NFPY\cdot OTf.$ 

catalyst 6 was found to be superior to catalyst 8 in the case of monosubstituted olefin 16a. No 16a was obtained without using Me<sub>3</sub>NFPY·OTf; the radical pathway is not involved in the case of monosubstituted olefin. Less nucleophilic arene 16b could also be used to give tetralin 17b. The superiority of catalyst 6 for 1,2-trans-disubstituted olefin 16c was quite noticeable; catalyst 6 gave desired product 17c in excellent yield, in contrast with catalyst 8 which produced no desired product.<sup>22</sup> Trisubstituted olefin 4a' was found to be applicable to this method using catalyst 8 to obtain compound 5a in 76% yield, which is comparable to the result shown in Table 1, entry 3. Therefore, there might be two reaction pathways leading to 5a: direct conversion from 4a to 5a and/or via 4a'.

In summary, we developed the Co-catalyzed intramolecular hydroarylation of unactivated olefins using a Co(salen) complex, Me<sub>3</sub>NFPY·OTf, and (Me<sub>2</sub>SiH)<sub>2</sub>O. Screening of the salen ligand led to the discovery of effective Co complex 8, enabling efficient synthesis of  $\alpha$ , $\alpha$ -dimethyl benzocycles from 1,1-disubstituted olefins. The mild, general, scalable, and functional group tolerant reaction could be applied to the synthesis of various molecules, including unnatural amino acid and estrone derivatives. Based on the result of the control

Organic Letters Letter

experiment without Me<sub>3</sub>NFPY·OTf (Table 1, entries 13, 14), our protocol should form a benzocyclic compound via a cationic pathway. Furthermore, the high ligand dependency of this reaction suggests that the cobalt complex could significantly interfere in the transition state of the carbon–carbon bond forming step. Both single-electron oxidation of the carbon radical by the cationic cobalt species and intramolecular nucleophilic trapping by the arene ring might occur simultaneously in a concerted transition state.<sup>23</sup> The origin of the ligand effect of complex 8 is under investigation.

#### ASSOCIATED CONTENT

# Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b01662.

Experimental procedures and analytical data (<sup>1</sup>H and <sup>13</sup>C NMR) for all new compounds (PDF)

#### AUTHOR INFORMATION

## **Corresponding Author**

\*E-mail: cgehisa@musashino-u.ac.jp.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

We thank Natsumi Koseki, Mayu Fujisawa, and Ryohei Kawai (Musashino university) for synthesizing some materials. This work was supported by JSPS KAKENHI (Grant Number 26860017), the Uehara Memorial Foundation, and the Takeda Science Foundation.

## **■** REFERENCES

- (1) Benbrook, D. M. Mini-Rev. Med. Chem. 2002, 2, 277-283.
- (2) Kagechika, H.; Shudo, K. J. Med. Chem. 2005, 48, 5875-5883.
- (3) Chandraratna, R. A. S. Br. J. Dermatol. 1996, 135, 18-25.
- (4) (a) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 9692–9693. (b) Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2003, 5, 1301–1303. (c) Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192–7193. (d) O'Malley, S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 13496–13497. (e) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2005, 70, 6775–6781.
- (5) Davis, T. A.; Hyster, T. K.; Rovis, T. Angew. Chem., Int. Ed. 2013, 52, 14181–14185.
- (6) Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 507–511.
- (7) Ding, Z.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 8574–8578.
- (8) Ghosh, K.; Rit, R. K.; Ramesh, E.; Sahoo, A. K. Angew. Chem., Int. Ed. 2016, 55, 7821–7825.
- (9) (a) Cacciuttolo, B.; Poulain-Martini, S.; Duñach, E. Eur. J. Org. Chem. 2011, 2011, 3710—3714. (b) Cacciuttolo, B.; Poulain-Martini, S.; Fontaine-Vive, F.; Abdo, M. A. H.; El-Kashef, H.; Duñach, E. Eur. J. Org. Chem. 2014, 2014, 7458—7468.
- (10) (a) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700–3701. (b) Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801–3804.
- (11) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581–584.
- (12) Xie, K.; Wang, S.; Li, P.; Li, X.; Yang, Z.; An, X.; Guo, C.-C.; Tan, Z. Tetrahedron Lett. **2010**, 51, 4466–4469.

(13) Jean, M.; van de Weghe, P. Tetrahedron Lett. 2011, 52, 3509-3513.

- (14) Bonderoff, S. A.; West, F. G.; Tremblay, M. Tetrahedron Lett. **2012**, 53, 4600-4603.
- (15) (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826–834. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1770. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (d) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879–5918. (e) Yoshikai, N. Bull. Chem. Soc. Jpn. 2014, 87, 843–857. (f) Andreatta, J. R.; McKeown, B. A.; Gunnoe, T. B. J. Organomet. Chem. 2011, 696, 305–315.
- (16) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. **2014**, 136, 16788–16791.
- (17) Crossley, S. W. M.; Martinez, R. M.; Guevara-Zuluaga, S.; Shenvi, R. A. Org. Lett. **2016**, *18*, 2620–2623.
- (18) (a) Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306–10309. (b) Shigehisa, H.; Nishi, E.; Fujisawa, M.; Hiroya, K. Org. Lett. 2013, 15, 5158–5161. (c) Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. J. Am. Chem. Soc. 2014, 136, 13534–13537. (d) Shigehisa, H. Synlett 2015, 26, 2479–2484. (e) Shigehisa, H.; Kikuchi, H.; Hiroya, K. Chem. Pharm. Bull. 2016, 64, 371–374.
- (19) (a) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 18, 1071-1074. (b) Baik, T. G.; Luis, A. L.; Wang, L. C.; Krische, M. J. J. Am. Chem. Soc. 2001, 123, 5112-5113. (c) Wang, L. C.; Jang, H. Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448-9453. (d) Waser, J.; Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 4099-4102. (e) Waser, J.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676-5677. (f) Waser, J.; González-Gómez, J. C.; Nambu, H.; Huber, P.; Carreira, E. M. Org. Lett. 2005, 7, 4249-4252. (g) Waser, J.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 8294-8295. (h) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693-11712. (i) Carreira, E.; Gaspar, B.; Waser, J. Synthesis 2007, 2007, 3839-3845. (j) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4519-4522. (k) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 5758-5760. (1) Gaspar, B.; Carreira, E. M. J. Am. Chem. Soc. 2009, 131, 13214-13215. (m) Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131, 4904-4916. (n) Girijavallabhan, V.; Alvarez, C.; Njoroge, F. G. J. Org. Chem. 2011, 76, 6442-6446. (o) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588-13591. (p) Leggans, E. K.; Barker, T. J.; Duncan, K. K.; Boger, D. L. Org. Lett. 2012, 14, 1428-1431. (q) Hu, X.; Maimone, T. J. J. Am. Chem. Soc. 2014, 136, 5287-5290. (r) Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300-1303. (s) King, S. M.; Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2014, 136, 6884-6887. (t) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343-348. (u) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304-1307. (v) Dao, H. T.; Li, C.; Michaudel, Q.; Maxwell, B. D.; Baran, P. S. J. Am. Chem. Soc. 2015, 137, 8046-8049. (w) Gui, J.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348, 886-891. (x) Ma, X.; Herzon, S. B. Chem. Sci. 2015, 6, 6250-6255. (y) Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 4962-
- (20) N-Fluoro-2,4,6-trimethylpyridinium trifluoromethanesulf-onate was used instead of tetrafluoroborate to avoid hydrofluorination. See ref 18b.
- (21) Partial incorporation of Shenvi's radical pathway cannot be ruled out in our protocol.
- (22) 16c was completely consumed, and a complex product mixture was observed.
- (23) Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655–12658.